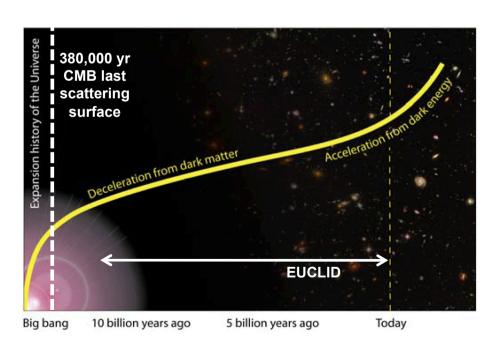
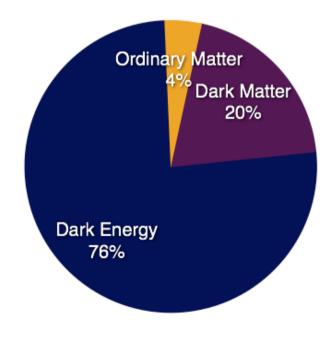


Euclid

Mapping the geometry of the Dark Universe


Alexandre Refregier (CEA Saclay)


See Euclid Assessment phase report ArXiv:0912.0914

Outstanding Questions in cosmology

- Nature of the Dark Energy
- Nature of the Dark Matter
- Initial conditions (Inflation Physics)
- Modifications to Gravity
 - → Euclid's Primary Science Objectives

Euclid concept

- High-precision survey mission to map the geometry of the Dark Universe
- Optimized for two complementary cosmological probes
 - Weak Gravitational Lensing
 - Baryonic Acoustic Oscillations

Additional probes: clusters, redshift space distortions, ISW

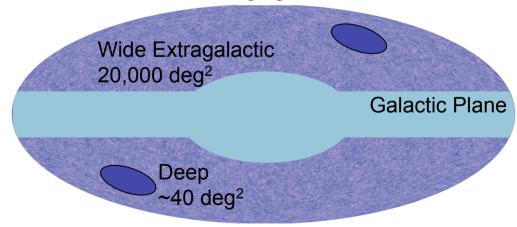
- Full extragalactic sky survey with 1.2m telescope at L2:
 - Imaging:
 - High precision imaging at visible wavelengths
 - Photometry/Imaging in the near-infrared
 - Near Infrared Spectroscopy
- Synergy with ground based surveys
- Legacy science for a wide range of areas in astronomy
- Survey Data public after one year

Mission elements:

- L2 Orbit
- 4-5 year mission
- Telescope: three mirror astigmat (TMA) with 1.2 m primary
- Instruments:
- VIS: Visible imaging channel: 0.5 deg², 0.10" pixels, 0.18" PSF FWHM, broad band R+I+Z (0.5-0.9mu), 36 CCD detectors, galaxy shapes
- NISP: NIR channel: 0.5 deg², 16 HgCdTe detectors, 0.9-2.0mu:
 - Photometry: 0.3" pixels, 3 bands Y,J,H, photo-z's
 - Spectroscopy: slitless, R=350, redshifts

Euclid Surveys

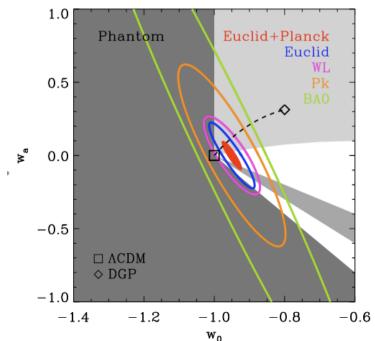
Wide Survey: 20,000 deg²


- Visible: Galaxy shape measurements fro 2.10 9 galaxies to $RIZ_{AB} \le 24.5$ (AB, 10 σ) at 0.16" FWHM, yielding 30-40 resolved galaxies/amin 2 , with a median redshift $z \sim 0.9$
- NIR photometry: Y, J, H \leq 24 (AB, 5 σ PS), yielding photo-z's errors of 0.03-0.05(1+z) with ground based complement (PanStarrs-2, DES, etc)
- Spectroscopy: redshifts for 70.10⁶ galaxies with emission line fluxes >3.10⁻¹⁶ ergs/cm²/s at 0.5<z<2 (slitless)

Deep Survey: 40 deg²

- Monitoring of PSF drift (40 repeats at different orientations over life of mission)
- Produces +2 magnitude in depth for both visible and NIR imaging data.

Possible additional Galactic surveys:


- Short exposure Galactic plane
- High cadence microlensing extra-solar planet surveys

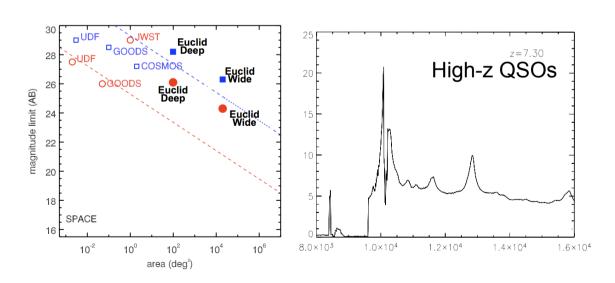
Impact on Cosmology

	Δw _p	ΔW_a	$\Delta\Omega_{\rm m}$	$\Delta\Omega_{\wedge}$	$\Delta\Omega_{\rm b}$	Δσ ₈	Δn _s	Δh	DE FoM
Current +WMAP	0.13	-	0.01	0.015	0.0015	0.026	0.013	0.013	~10
Planck	-	-	0.008	-	0.0007	0.05	0.005	0.007	-
Weak Lensing	0.03	0.17	0.006	0.04	0.012	0.013	0.02	0.1	180
Imaging Probes	0.018	0.15	0.004	0.02	0.007	0.009	0.014	0.07	400
Euclid	0.016	0.13	0.003	0.012	0.005	0.003	0.006	0.020	500
Euclid +Planck	0.01	0.066	0.0008	0.003	0.0004	0.0015	0.003	0.002	1500
Factor Gain	13	>15	13	5	4	17	4	7	150

Euclid Imaging will challenge all sectors of the cosmological model:

Dark Energy: w_p and w_a with an error of 2% and 13% respectively (no prior)

Dark Matter: test of CDM paradigm, precision of 0.04eV on sum of neutrino masses (with Planck)


Initial Conditions: constrain shape of primordial power spectrum, primordial non-gaussianity

Gravity: test GR by reaching a precision of 2% on the growth exponent γ ($d\ln\delta_{\rm m}/d\ln a \propto \Omega_{\rm m}^{\gamma}$)

→ Uncover new physics and map LSS at 0<z<2: Low redshift counterpart to CMB surveys

- Unique legacy survey: 2 billion galaxies imaged in optical/NIR to mag 24, 70 Million NIR galaxy spectra, full extragalactic sky coverage, Galactic sources
- Unique datase for various fields in astronomy: galaxy evolution, search for high-z objects, clusters, strong lensing, brown dwarfs, exo-planets, etc
- Synergies with other facilities: JWST, Planck, Erosita, GAIA, DES, Pan-STARSS, LSST, etc
- All data publicly available through a legacy archive

Project Status

• 2004: Dark Universe Mission proposed as a Theme to ESA's Cosmic Vision programme

- 2006: Recommendation of ESO/ESA Working Group on Fundamental Cosmology
- Oct 2007: DUNE and SPACE jointly selected for an ESA Assessment Phase

- May 2008: Validation of the merged concept Euclid by the ESA AWG
- Sept 2008: Recommendation from Astronet Infrastructure Roadmap report
- Sept 2008-Sept 2009: Assessment study phase
- 2010-2011: Definition phase
- March-May 2010: Baseline optimisation with EOAT (merging of NIP and NIS)
- July 2010: Definition phase ESA AO (due Oct 2010)
- February 2011: Formation of Euclid Science Team
- Mid 2011: M1/M2 Cosmic Vision Selection
- 2012-2017: Implementation phase (if selected)
- 2017-2018: ESA launch of the Cosmic Vision M1/M2 missions

Conclusions

- Euclid is a high-precision wide-field survey mission to map the geometry of the Dark Universe
- Euclid will provide unprecedented accuracy on all sectors of the cosmological model: Dark Energy, Dark Matter, Initial Conditions, Gravity
- Euclid will also provide unique legacy science from its all sky legacy archive and additional surveys
- Complementary and analogous to CMB measurement of Large-Scale Structure at matter-radiation transition epoch: Euclid will provide high-precision map of LSS at matter-DE transition epoch: 3D, nongaussian, multi-probe